An extracellular phosphoglycan (exPG), present in the culturem edium of the promastigote form L oefi shmania donovani, was purified and structurally characterized. The purification scheme included ethanol precipitation of the culture medium, anion exchange chromatography, hydrophobic chromatography on phenyl-Sepharose, and preparative polyacrylamgeild e electrophoresis. Structural analysis by ‘H-’H NMR, methylation linkage analysis, and glycosidase digestion revealed that the exPG consisted of thfoel lowing structure: (CAP)+[P04-6Galp@1-4Manpal]lo-11-POr6GalpB1-4Man. The capw as found to be ones eovf eral small, neutral oligosaccharides, the most abundant of which was the trisaccharide Galp@l-4(Manpal-2)Man. The results indicated structural analogy to the cellular-derived lipophosphoglycan (LPG) from L. donovani. The important exceptions are a lacko f the lipid anchor, the entire phosphosaccharide core, and several of the repeating disaccharide units. Although the function of exPGis presently unknowni,t may play a protective role for the promastigote in the insect vector or during infection of a mammalian host
The primary structure of the major surface glycoconjugate of Leishmania donovani parasites, a lipophosphoglycan, has been further characterized. The repeating PO4-6Galp beta 1-4Man disaccharide units, which are a salient feature of the molecule, are shown to terminate with one of several neutral structures, the most abundant of which is the branched trisaccharide Galp beta 1-4(Manp alpha 1-2)Man. The phosphosaccharide core of lipophosphoglycan, which links the disaccharide repeats to a lipid anchor, contains 2 phosphate residues. One of the core phosphates has previously been localized on O-6 of the galactosyl residue distal to the lipid anchor; the second phosphate is now shown to be on O-6 of the mannosyl residue distal to the anchor and to bear an alpha-linked glucopyranosyl residue. Also, the anomeric configuration of the unusual 3-substituted Galf residue in the phosphosaccharide core is established as beta. The complete structure of the core is thus PO4-6Galp alpha 1-6Galp alpha 1-3Galf beta 1-3[Glcp alpha 1-PO4-6]Manp alpha 1-3Manp alpha 1-4GlcN alpha 1-. This further clarification of the structure of lipophosphoglycan may prove beneficial in determining the structure-function relationships of this highly unusual glycoconjugate.
Background: Role of apolipoprotein (apo) A-II on metabolism of high density lipoproteins (HDLs) is unknown.
Results: Conformational changes of apoA-I, the major apolipoprotein of HDL, caused by apoA-II in discoidal HDL are confined to two regions of apoA-I.
Conclusion: Interactions between the two major apolipoproteins in discoidal HDL are site specific.
Significance: Functional implications of HDL complexes will significantly benefit from such structural information.
Background: Acid -glucosidase is trafficked to the lysosome by LIMP-2.
Results: A unique 11-amino acid sequence on acid -glucosidase was critical for its LIMP-2-dependent targeting to the lysosome.
Conclusion: This sequence is essential for oligosaccharide-independent targeting of synthesized acid -glucosidase to the lysosome.
Significance: Modification of this sequence has basic/therapeutic implications for Gaucher disease and its comorbidities (e.g. Parkinson disease).