The Coalinga, California region contains massive amounts of diapirically emplaced deposits of serpentinite. The largest deposit, the New Idria Formation, forms the core of the Joaquin Ridge Anticline and outcrops over an elliptically-shaped 48-square mile area in a mountainous area 17 miles northwest of Coalinga and 15 miles west of the California Aqueduct constructed along the western margin of the San Joaquin Valley. The serpentinite deposit is in faulted diapiric contact with Cretaceous-aged sandstones and shales and became emergent approximately 17 to 20 million years ago in the Miocene era. Eroded asbestos-bearing sediment from this ultramafic deposit has been incorporated in late-Miocene and younger sedimentary formations in the central San Joaquin Valley region.
Alkylammonium ion exchange, x-ray powder diffraction (XRD), x-ray fluorescence spectroscopy (XRF), and high resolution transmission electron microscopy (HRTEM) have been used to study the chemistry and the physical properties of illite/smectite (I/S) clays from Paleozoic K-bentonites. The data have been used to evaluate current models of I/S interstratification and the mechanism of formation of illite during bentonite diagenesis.
This dissertation is a contribution toward low pressure geochemistry and petrology of alkaline rocks. In order to analyze the phase equilibria in multiply saturated potassic alkaline systems, experiments were performed at one atmosphere pressure and under the $\rm f\sb{O2}\sim QFM$ buffer. Range of temperature covered in this study is 1060-1250$\sp\circ$C. In addition, temperature and composition dependency of low pressure mineral-melt equilibria involving olivine, pyroxenes, plagioclase, nepheline, and leucite were modeled using empirical equations.