
 1

Bookstore Management System

By

Jonathan Makcen

Submitted to
the Faculty of the Information Engineering Technology Program

in Partial Fulfillment of the Requirements for
the Degree of Bachelor of Science

in Information Engineering Technology

University of Cincinnati
College of Applied Science

May 2006

 2

Bookstore Management System

by

Jonathan Makcen

Submitted to
the Faculty of the Information Engineering Technology Program

in Partial Fulfillment of the Requirements
for

the Degree of Bachelor of Science
in Information Engineering Technology

© Copyright 2006 Jonathan Makcen

The author grants to the Information Engineering Technology Program permission
to reproduce and distribute copies of this document in whole or in part.

___ __________________
Jonathan Makcen Date

___ __________________
Russ McMahon, Faculty Advisor Date

___ __________________
Patrick C. Kumpf, Ed.D. Interim Department Head Date

 3

Acknowledgements

 Special thanks to Bennie Durr for sponsoring this project and providing the

hardware needed for the Point-of-Sale system.

 Additionally, special thanks to Randy Burnett and Ideal Computer Solutions for

donating the Point-of-Sale hardware that was used at the Tech Expo.

 4

Table of Contents

Section Page
Acknowledgments iii
Table of Contents iv
List of Figures vi
Abstract vii

1. Description and Intended Use 1
 1.1 Problem Statement 1
 1.2 Solution 2
 1.3 User Profiles 3
 1.3.1 Manager 3
 1.3.2 Cashier 4

2. Design Protocols 5
 2.1 Software Design 5
 2.2 Class Design 6
 2.3 Database Design 8
 2.4 User Interface 9

3. Project Plan 11
 3.1 Timeline 11
 3.2 Resources 11
 3.3 Budget 12

4. Proof of Concept 13
 4.1 Login 13
 4.2 Point-of-Sale Console 14
 4.2.1 Sale 14
 4.2.2 Return 16
 4.2.2 Payout 16
 4.3 Management Console 17
 4.3.1 Inventory 17
 4.3.2 Employees 19
 4.3.3 Customers 19
 4.3.4 Sales History 20

5. Test Plan 22

6. Deliverables 23

7. Conclusion and Recommendations 24
 7.1 Conclusion 24
 7.2 Recommendations 24

 5

8. References 25

9. Appendix A – OPOS Implementation 26

 6

List of Figures

Figure Title Page

Figure 1 – Use Case Diagram 5

Figure 2 – Data Access Layer 6

Figure 3 – Business Layer 7

Figure 4 – Database Diagram 9

Figure 5 – Timeline 11

Figure 6 – Budget 12

Figure 7 – Welcome Splash Screen 13

Figure 8 – Login Dialog Box 13

Figure 9 – Sale: Adding items to the sale 15

Figure 10 – Sale: Cash payment 15

Figure 11 – Return on a sale 16

Figure 12 – Payout functionality 17

Figure 13 – Inventory: adding an item 18

Figure 14 – Inventory: editing item details 18

Figure 15 – Employee management 19

Figure 16 – Customer management 20

Figure 17 – Sales history 21

Figure 18 – Sales history: item count 21

 7

Abstract

The Bookstore Management System is a software application that is designed to

provide a complete management solution to a bookstore. The Bookstore Management

System will help the owner make intelligent and informed decisions regarding his

business by bringing all the data together into a meaningful set of tools. Provided in the

application is a Point-of-Sale system, inventory management system, and reporting

tools. By utilizing all aspects of the system, a business owner will be able to run a

successful and efficient business. The Bookstore Management System is built on the

latest .NET technologies: SQL Server 2005 and C#.NET. The system interacts with all

common Point-of-Sale hardware, and is designed to also interact with credit card

processors and warehouse distributors for efficient inventory management.

 8

Description and Intended Use

Problem Statement

Bookstore owners are in need of systems to better manage and run their stores.

These systems should not burden the owner and employees with confusing and hard-to-

operate systems, but provide simple and easy-to-use automation where it makes sense.

 The first need of a management system is a repository that contains all the

needed data about the store. This repository will have to store information about the

inventory of the store, the employees of the store, the inventory suppliers, and the

customers of the store. This data will have to meet three requirements: it will need to be

secure and at the same time it will need to be readily available and easily accessible.

This repository will be the central item of the management system. All other

requirements and features of the system will be driven by the data in the repository.

 A second need of a management system is a Point-Of-Sale (POS) module. This

POS module is needed for cashiers to quickly and efficiently assist customers in their

purchase of items from the store. Without a POS module, the cashiers must manually

add the price of each item, make quick decisions about the price of an item if it does not

have a sticker, add receipts at the end of the day, and complete manual inventory

counts. Therefore, the POS module must then make the job of a cashier easier and

more efficient. The POS module must have a connection to the repository of inventory

for price lookups; it must calculate the price of the overall sale; it must be able to

calculate the tax of a sale; it must deduct the quantity of the item in the inventory list by

the number of items ordered; and it must have the ability to calculate in special pricing

like coupons or tax-exempt status; it must record all this information about a sale for the

purpose of records and reports; it must be able to handle item returns by customers and

generate the appropriate reports regarding such action; finally, the POS module must be

 9

able to make use of common POS hardware like a barcode scanner, cash drawer, and

receipt printer.

 A third need of a management system is reporting functionality. Management

needs to be able to see the reports that detail the number of items sold, the amount of

money being generated by sales, high or low selling items, high selling periods, or any

other type of analytical or statistical reports. The reports must be able to pull data from

the repository about sales as well as be able to relate data about the sales to inventory

data.

 A fourth need of a management system is inventory control functionality. This

would include functionality to add to and to edit items in the repository, and create orders

for either new or existing items. A subset of this functionality would also be several

business components. This would include the ability to track accounts payable on

orders placed for items, and also track accounts receivable on credit purchases.

 In conclusion, there is a need for a system that makes the daily tasks and

operations of bookstore owners simpler and more convenient. The system should be

easy-to-use as well as clean and neat. Automation and efficiency is the ultimate goal,

not confusion and more work.

Solution

My solution to the bookstore owners dilemma is a customized software and

database application called the Bookstore Management System.

Some of the highlights of this product will be

• Two stand-alone consoles, a Point-of-Sale (POS) console and a Management

console:

• POS integration with all major POS hardware, including a barcode scanner

receipt printer, cash drawer, pole display, and credit card processor:

 10

• Centralized database to which one or more consoles can connect:

• Complete control of inventory through Management console including the ability

to add and edit items in the database, categorization of the items, management

of distributors and their contacts, contact capabilities to the distributors for direct

ordering, and employee management:

• Account tracking for accounts payable and receivable:

• Reports for sales analysis and accounts analysis:

• Separation of duties through user roles for management and cashier

responsibilities

The POS console of the software application will be designed in a manner similar to

current POS systems to allow for similarity in operation. It is important that the user

interface is designed in such a manner that it is easy to operate and easy to teach others

how to operate. The POS console will allow for the reading of item information from the

database, and writing to the sales records. The POS console will not have access to

write information to any of the item tables.

User Profiles

There are two user profiles that will be created for the system, the manager and

the cashier.

Manager

The manager profile will be the administrator of the system. The manager will

have complete control over the database and all the information in it. He/she will be able

to add and edit items, add and edit employee information, view and print reports, make

price adjustments, and create coupons. The manager will also be able to operate the

POS console.

 11

Cashier

The cashier will be able to only operate the POS console. This will restrict those

that have been labeled as a cashier from changing item information. Through the POS

console, the cashier will have the access to read only the item information and write to

the sales records table only for the current sale or return. The cashier will not have

access to go back and change sales information; a manager would be required to do

that.

 12

Design Protocols

Software Design

The Bookstore Management System will be a single software application with

two modules. A user will be required to log into the system to begin use of the software.

The functions that will be provided to the user after login will depend on their granted

role and are shown in the use cases in Figure 1. This use case diagram shows that

either a Cashier or a Manager can log into the system. The manager will have all the

functionality available that the Cashier has, plus additional capabilities. The Cashier will

only be able to operate the POS system.

Credit Card Processing
System

Create Sale

Create Return

Tax Calculator

Login and
Verification

Manage Database
Items

Manage Accounts

Manage Employees

Generate Reports

Customer

Cashier

Manager

Login and
Verification

POS System

Management
Console

Figure 1 – Use Case Diagram

 13

Class Design

The software component of the project has been developed using the n-tier

application approach and as such has 3 layers: the user interface layer, the data access

layer, and the business process layer. Figure 2 illustrates all the classes and their

interaction with each other. The data access layer has an access class that corresponds

to each object class in the business layer. For example, the ItemDA class is the data

access class for the Item business layer class.

Data Access Layer

+CategoryDA()()
+addCategory(Attributes)()
+updateCategory(existingcategory)()
+loadCategory(categoryid)()
+listAllCategory()()

CategoryDA

+StyleDA()()
+addStyle(Attributes)()
+updateStyle(existingstyle)()
+loadStyle(styleid)()
+listAllStyle()()

StyleDA

+GenreDA()()
+addGenre(Attributes)()
+updateGenre(existinggenre)()
+loadGenre(genreid)()
+listAllGenre()()

GenreDA

+DistributorContactDA()()
+addDistributorContact(Attributes)()
+updateDistributorContact(existingcontact)()
+loadContact(contactid)()
+listAllDistributorContact()()

DistributorContactDA

+DistributorDA()()
+addDistributor(Attributes)()
+updateDistributor(existingdistributor)()
+loadDistributor(distributorid)()
+listAllDistributor()()

DistributorDA

+ItemDA()()
+addItem(Attributes)()
+updateItem(existingitem)()
+loadItemByID(itemid)()
+loadItemByUPC(upccode)()
+loadItemByISBN(isbnnumber)()
+listAllItems()()

ItemDA

+SaleDA()()
+AddSale(Attributes)()
+AddItem(item, sale)()
+loadSale(saleid)()
+loadSaleItem(saleid)()
+listAllSales()
+listAllItemSales()
+addPayout()
+listPayouts()
+createReturn()
+addReturnItems()

SaleDA

+CustomerDA()
+addCustomer()()
+loadCustomer()()
+listAllCustomers()
+updateCustomer()()

CustomerDA

+EmployeeDA()()
+addEmployee()()
+updateEmployee()()
+loadEmployee()()
+listAllEmployees()()

EmployeeDA

+InvoiceDA()
+addInvoice()
+updateInvoice()
+loadInvoice()
+loadAllCustomerInvoice()
+loadAllInvoice()
+loadAllOpenInvoice()
+loadAllClosedInvoice()

InvoiceDA

+PublisherDA()
+addPublisher()
+updatePublisher()
+loadPublisher()
+listAllPublisher()

PublisherDA

+AuthorDA()
+addAuthor()
+updateAuthor()
+loadAuthor()
+listAllAuthor()

AuthorDA

Figure 2 – Data Access Layer

 14

+Item()()
+Item(attributes)()
+getAttribute()()
+setAttribute()

-ItemID : int
-ItemName : int
-ISBNNumber : string
-UPCCode : string
-PublishedDate : string
-Edition : string
-Description : string
-Price : decimal
-Cost : decimal
-Category : int
-Genre : int
-Style : int
-Author : int
-Publisher : int
-Distributor : int

Item

+Sale()()
+Sale(Attributes)()
+getAttribute()()
+setAttribute()()
+calculateChange()()
+calculateTax()()
+calculateSubTotal()()
+calculateSalesTotal()()
+addItem(Item)()
+removeItem(Item)()
+updateItem(index, Item)()
+listItems()()
+getItembyIndex(index)()
+removeItembyIndex(index)()

-saleid : int
-datetime
-taxexemptid : int
-salestaxrate : decimal
-subtotal : decimal
-taxtotal : decimal
-saletotal : decimal
-amounttendered : decimal
-changereturned : decimal
-paymenttype : string
-saleitem

Sale

+Category()()
+Category(Attributes)()
+getAttribute()()
+setAttribute()()

-categoryid : int
-name : string
-description : string

Category

+Style()()
+Style(Attributes)()
+getAttribute()()
+setAttribute()()

-styleid : int
-name : string
-description : string

Style

+Genre()()
+Genre(Attributes)()
+getAttribute()()
+setAttribute()()

-genreid : int
-name : string
-description : string

Genre

+Distributor()()
+Distributor(Attributes)()
+getAttribute()()
+setAttribute()()

-distributorid : int
-name : string
-phonenumber : string
-address : string
-city : string
-state : string
-zip : int

Distributor

+DistributorContact()()
+DistributorContact(Attributes)()
+getAttribute()()
+setAttribute()()

-distributorid : int
-contactid : int
-firstname : string
-lastname : string
-emailaddress : string
-phonenumber : string

DistributorContact

Business Layer

+Invoice()
+getAttribute()
+setAttribute()

-invoice_id : int
-sale_id : int
-date_created : Date
-amount_due : decimal
-date_paid : Date
-amount_paid : decimal
-payment_type : string

Invoice

+Employee()
+getAttributes()
+setAttributes()
+Validate()

-employee_id
-first_name
-last_name
-password
-role

Employee

+Customer()
+getAttributes()
+setAttributes()

-customer_id
-first_name
-last_name
-address
-city
-state
-zip
-phone
-email

Customer

+Publisher()
+getAttribute()()
+setAttribute()()

-publisher_id : int
-name : string
-phonenumber : string
-address : string
-city : string
-state : string
-zip : int

Publisher

+Author()
+getAttributes()
+setAttributes()
+Validate()

-author_id
-first_name
-last_name

Author

Figure 3 – Business Process Layer

 15

Database Design

The database for this project is a collection of highly normalized tables. The

central table is the Item table, and the majority of the other tables are related in some

way to the items. The Publisher, Distributor, Category, Genre, and Style tables are all

relational secondary tables that contain additional information about the items. The

Sales and Return tables relate to the Item table in that a sale or return can contain

multiple items.

 16

Author

PK author_id

 first_name
 last_name

Publisher

PK publisher_id

 publisher_name

Distributor

PK distributor_id

 name
 phone_number
 address
 city
 state
 zip

Category

PK category_id

 category_name
 description

Item

PK item_id

 upc_code
 isbn_number
 item_name
 description
 genre
 quantity
 price
 published_date
 edition
 cost
FK1 distributor_id
FK2 author_id
FK3 publisher_id
FK4 category_id
FK5 coupon_code

Sale

PK sale_id

 date
FK1 coupon_code
 discount_manual
 taxexempt_id
FK3 customer_id
FK2 employee_id

SaleItem

PK,FK2 sale_id
PK,FK1 item_id

 quantity
 price
 discount_manual
FK3 coupon_code

SaleCoupon

PK coupon_code

 coupon_description
 amount

DistributorContact

PK contact_id

FK1 distributor_id
 first_name
 last_name
 email_address
 phone_number

ReturnItem

PK,FK1 sale_id
PK,FK1 item_id
PK return_id

 quantity
 amount_credited
 date

Employee

PK employee_id

 first_name
 last_name
 phone_number
 address
 city
 state
 zip
 role ItemCoupon

PK coupon_code

 description
 amount

AccountsPayable1

PK payment_id

FK1 distributor_id
 reference_number
 date_created
 amount_due
 date_paid
 amount_paid

Customer1

PK customer_id

 first_name
 last_name
 phone_number
 address
 city
 state
 zip

AccountsReceivable1

PK invoice_id

FK1 customer_id
 date_created
 amount_due
 date_paid
 amount_paid

User Interface

The user interface is an important part of this project. The user must be able to

understand the functionality available to him through the screens they are looking at and

know how to apply it. The overall design will be a toolbar at the top of the screen with

Figure 4 – Database Diagram

 17

buttons that take the user to the main subsections of the program. On each section, the

functionality available there will be specific to that given area.

POS Console

It is important that the user interface design of the POS Console be designed

with a similar look and feel compared to current POS Consoles. This similarity would

allow for familiarity in usage and ease of transitioning from one system to another. The

design components that are outputs from this requirement include: large, easy-to-read

buttons; a list of the items in the current sale or return; on-screen hints for keyboard

shortcuts; clear flow of process from start of new sale or return to completion of

checkout; and prompts at appropriate milestones in the sale or return process flow.

Management Console

The user interface design of the Management Console will contain a large

amount of functionality, but should be presented in such a way that it is not confusing or

hard to use. This simplicity will be achieved by breaking down the functionality into

similar categories, and presenting each category on a separate screen.

 18

Project Plan

Timeline

Resources

• Developer (myself)

• SQL Server 2005 Express

• Visual C# 2005 Express

• Visio 2005

• Project 2005

• Advisor (Russ McMahon)

Figure 5 – Project Timeline

 19

Budget

 The chart in Figure 6 is an estimate of the cost of labor for this project. Since I

am using SQL Server 2005 Express and Visual C# 2005 Express, there are no software

costs for this project. These are free downloads from Microsoft.

Figure 6 – Budget Estimation for Labor

 20

Proof of Concept

Login

When a user starts the program, they are presented with the Welcome Screen

(Figure 7). The welcome screen provides two options to the user, launching either the

POS Console or the Management Console.

When the user attempts to launch one of the consoles, they will be prompted for their

username and password combination. The username is their employee id number, and

their password is a phrase that the user sets.

Figure 8 – Login dialog box

Figure 7 – Welcome Splash Screen

 21

Two checks are performed. The first is to validate that the user attempting access to the

console is a registered user in the system. The second check happens when the

management console is launched. The user must be a Manager. A cashier cannot log

into the management console.

Point-of-Sale Console

 There are three pieces of functionality in the POS console. A cashier has the

option to start a new sale, start a new return, or perform a payout.

Sale

 The sale functionality provides the tools for the cashier to create a sale for a

customer. This includes adding items to the sales list, editing the price of those items on

the sales list, adding a miscellaneous item, changing the taxable status of items on the

sales list, adding a coupon to the sale, and processing the payment for the sale either by

cash, check, credit card, or charge account. Figure 8 depicts the system at the point at

which items can be added to the sale and figure 9 depicts the system at the point of

payment with the Cash options shown.

 22

Figure 9 – Sale: Adding Items to the sale

Figure 10 – Sale: Cash Payment

 23

Return

 The return functionality provides the tools for the cashier to create a return on

particular items that had previously been sold. This includes loading a previously

created sale, selecting the items to return, and processing the return of payment for the

items selected.

Payout

 At times, it is necessary for the person managing the cash register to perform a

payout. The reasons for this could be: Manual return of an item where there is no

receipt, purchase of an item, or a need for cash for some other reason. The system

requires entering a reason for the payout for tracking and history purposes.

Figure 11 – Return on a sale

 24

Management Console

 The management console provides all the functionality needed to maintain the

store inventory, sales data, customer data including outstanding invoices, and employee

data. In addition, it also provides the necessary reports to enable proper management

of the store.

Inventory

 The management console provides management of the inventory by providing

the necessary processes to add new items and update item information. The inventory

can also be searched by item id, isbn number, upc code. Additionally, searches can be

run on the item name field, where the system will return all items where the string the

Figure 12 – Payout functionality

 25

user enters is in the item name. Finally, reports can be run to show the user low stock

items and selling history on items.

Figure 13 – Inventory: Adding an item

Figure 14 – Inventory: Editing item details

 26

Employees

 The management console provides the management of employees through

providing the ability to add and update employee information.

Customers

 Customer management is provided as well by the ability to add and edit

customer information. Additionally, customers are able to charge purchases to their

account. Management of this is provided by the ability to view outstanding invoices and

print individual invoices for billing purposes as well as complete outstanding invoices.

Figure 15 – Employee Management

 27

Sales History

 Sales history is tracked by both item sales history and total sales history. These

reports are able to be filtered several different ways, including date ranges, sale value

and item counts.

Figure 16 – Customer Management

 28

Figure 17 – Sales history

Figure 18 – Sales history: Item count

 29

Test Plan

The Test Plan for this project consists of two phases. The first phase is unit

testing. As each piece of the software is developed, it will be tested both independently

and in conjunction with the rest of the project. Additionally, all input forms will be tested

for data quality and validity. All data access objects will be tested for correct functionality

and for proper error capturing in the event of incorrect usage. All forms will be tested to

ensure that they do not allow bad data to be entered. All data displayed by the system

will be verified by comparing what the system displays to what is actually in the

database. The POS system will be tested to ensure that all calculations are performed

correctly and all receipts match the original sale request. When returns are created,

original sales information must be verified to be correct to ensure correct calculation of

the return amount.

 The second phase of the testing will be the system testing and user acceptance

testing. The system will be set up for the users to use for a period of time in a testing

environment. This will ensure that the entire system is working together as expected,

that the system meets the users needs, and that the solutions are capable of providing

quality data.

 30

Deliverables

• A database created in SQL Server 2005

• A POS front-end console designed in C# that has the capability to

o Process the sales of items:

o Process the returns of items:

o Interface with common POS hardware:

o Interface with a credit card processor:

• A Management system designed in C# that provides data management, account

management, and employee management which includes

o Add and edit items in the database:

o Connect to distributors system to order/reorder items:

o Manage employee data:

o Create and view reports for all relevant data:

o Manage outstanding debts and credits:

o Create coupons for in-store use:

• User roles to provide security to the system

o Cashier role – ability to run POS console only:

o Manager role – ability to run either the POS console or the Management

console:

 31

Conclusions and Recommendations

Conclusion

 In conclusion, I have developed a complete application that will assist a store

owner in running a small commerce business. The application was built on the .NET 2.0

Framework using C# as the coding language. The database and all database

procedures were developed using SQL Server 2005.

 I failed to complete one deliverable, and that was providing the ability to create a

connection to a distributor for the purpose of automating orders. This is on my list of

things-to-do to get this project production ready. All other deliverables were successfully

met.

Recommendations

 My recommendation to future Seniors is to find a project that pushes the edge of

whatever specialty they are in. I feel that my project was a little bland in that it was a

desktop application that connects to a database. I was able to successfully make the

POS hardware work, which was a great challenge; otherwise, it was a pretty standard

project. I would recommend finding something that is cutting edge and a little more

unique.

 I did enjoy working with the POS hardware. In appendix A you will find code

samples of what it took to get them working. This was an interesting endeavor because

I had never programmatically worked with external hardware on the computer.

 32

References

1. Frederick, David. Business Analyst. Personal Interview. October 2005.
2. Hoffman, Kevin and Lonny Kruger. Microsoft Visual C# .NET 2003 Unleashed.

Sams: 2004.
3. Microsoft Windows Embedded Point of Sale Operating System website.

http://msdn.microsoft.com/embedded/getstart/devplat/pos/default.aspx. October
2005.

4. Microsoft SQL Server 2005 Express website.
http://lab.msdn.microsoft.com/express/sql/. October 2005.

5. Monroe Consulting Services - OLE for Point-of-Sale Systems website.
http://monroecs.com/opos.htm. October 2005.

6. Montgomery, Benjamin T. “Supplemental Sun Salon Management System”.
OCAS Timothy C. Day Technical Library. 2003

7. Point-of-Sale Superstore website.
http://www.posguys.com. October 2005.

8. POSWorld – Point of Sale and Barcode Superstore website.
http://www.posworld.com. October 2005.

9. Sales Consultant, PCAMERICA. http://pcamerica.com. Email interview. October
2005.

10. Seabolt, Brian. “The Complete Inventory Tyrant: A Total Inventory Control
System”. OCAS Timothy C. Day Technical Library. 2002.

http://msdn.microsoft.com/embedded/getstart/devplat/pos/default.aspx
http://lab.msdn.microsoft.com/express/sql/
http://monroecs.com/opos.htm
http://www.posguys.com/
http://www.posworld.com/
http://pcamerica.com/

 33

Appendix A – OPOS Implementation

 The implementation of the POS hardware was completed by using the

OLE for Point of Sale (OPOS) standards. Here are several code samples of those

implementations.

Barcode Scanner

Code added to the designer.cs page to create a data event handler for the scanner.

//
//scanner
//
this.scanner.DataEvent += new
SCANNERLib._DScannerEvents_DataEventEventHandler(scanner_DataEven
t);

Object declaration

private SCANNERLib.ScannerClass scanner = new
SCANNERLib.ScannerClass();

Scanner initialization

scanner.Open("Scanner1");
if (scanner.Open("Scanner1") != 0)
{
 MessageBox.Show("Failed to connect scanner");
}
scanner.DecodeData = true;
scanner.DataEventEnabled = true;
if (scanner.ClaimDevice(1000) != 0)
{
 MessageBox.Show("Failed to claim scanner");
}
scanner.DeviceEnabled = true;
if (scanner.ResultCode != 0)
{
 MessageBox.Show("Failed to enable scanner");
}

Event Handler Procedure

 private void scanner_DataEvent(int i)
 {
 txtUPCCode.Text = scanner.ScanData;

 scanner.DataEventEnabled = true;
 }

 34

Pole Display

Object Declaration

private POS.Devices.OPOSLineDisplayClass ddd = new
POS.Devices.OPOSLineDisplayClass();

Object Initialization

 try
 {
 ddd.Open("LC-PD");
 ddd.ClaimDevice(1000);
 ddd.DeviceEnabled = true;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

Sending data to the display

 ddd.ClearText();
 ddd.DisplayTextAt(0, 0, i.getStrItemName(), 0);
 ddd.DisplayTextAt(1, 0, i.getNumPrice().ToString(), 0);

