Bookstore Management System

By

Jonathan Makcen

Submitted to
the Faculty of the Information Engineering Technology Program
in Partial Fulfillment of the Requirements for
the Degree of Bachelor of Science
in Information Engineering Technology

University of Cincinnati
College of Applied Science

May 2006

Bookstore Management System

by

Jonathan Makcen

Submitted to
the Faculty of the Information Engineering Technology Program
in Partial Fulfillment of the Requirements
for
the Degree of Bachelor of Science
in Information Engineering Technology

© Copyright 2006 Jonathan Makcen

The author grants to the Information Engineering Technology Program permission
to reproduce and distribute copies of this document in whole or in part.

Jonathan Makcen Date

Russ McMahon, Faculty Advisor Date

Patrick C. Kumpf, Ed.D. Interim Department Head Date

Acknowledgements

Special thanks to Bennie Durr for sponsoring this project and providing the
hardware needed for the Point-of-Sale system.
Additionally, special thanks to Randy Burnett and Ideal Computer Solutions for

donating the Point-of-Sale hardware that was used at the Tech Expo.

Table of Contents

Section
Acknowledgments
Table of Contents
List of Figures
Abstract

1. Description and Intended Use
1.1 Problem Statement
1.2 Solution
1.3 User Profiles
1.3.1 Manager
1.3.2 Cashier

2. Design Protocols
2.1 Software Design
2.2 Class Design
2.3 Database Design
2.4 User Interface

3. Project Plan
3.1 Timeline
3.2 Resources
3.3 Budget

4. Proof of Concept

4.1 Login

4.2 Point-of-Sale Console
4.2.1 Sale
4.2.2 Return
4.2.2 Payout

4.3 Management Console
4.3.1 Inventory
4.3.2 Employees
4.3.3 Customers
4.3.4 Sales History

5. Test Plan
6. Deliverables
7. Conclusion and Recommendations

7.1 Conclusion
7.2 Recommendations

Page
ii

Vi
vii

A WWN R P

© 00 O U1 01

11
11
12

13
13
14
14
16
16
17
17
19
19
20

22
23
24

24
24

8. References

9. Appendix A — OPOS Implementation

25

26

List of Figures

Figure Title

Figure 1 — Use Case Diagram

Figure 2 — Data Access Layer

Figure 3 — Business Layer

Figure 4 — Database Diagram

Figure 5 — Timeline

Figure 6 — Budget

Figure 7 — Welcome Splash Screen
Figure 8 — Login Dialog Box

Figure 9 — Sale: Adding items to the sale
Figure 10 — Sale: Cash payment

Figure 11 — Return on a sale

Figure 12 — Payout functionality

Figure 13 — Inventory: adding an item
Figure 14 — Inventory: editing item details
Figure 15 — Employee management
Figure 16 — Customer management
Figure 17 — Sales history

Figure 18 — Sales history: item count

Page

11
12
13
13
15
15
16
17
18
18
19
20
21

21

Abstract

The Bookstore Management System is a software application that is designed to
provide a complete management solution to a bookstore. The Bookstore Management
System will help the owner make intelligent and informed decisions regarding his
business by bringing all the data together into a meaningful set of tools. Provided in the
application is a Point-of-Sale system, inventory management system, and reporting
tools. By utilizing all aspects of the system, a business owner will be able to run a
successful and efficient business. The Bookstore Management System is built on the
latest .NET technologies: SQL Server 2005 and C#.NET. The system interacts with all
common Point-of-Sale hardware, and is designed to also interact with credit card

processors and warehouse distributors for efficient inventory management.

Description and Intended Use

Problem Statement

Bookstore owners are in need of systems to better manage and run their stores.
These systems should not burden the owner and employees with confusing and hard-to-
operate systems, but provide simple and easy-to-use automation where it makes sense.

The first need of a management system is a repository that contains all the
needed data about the store. This repository will have to store information about the
inventory of the store, the employees of the store, the inventory suppliers, and the
customers of the store. This data will have to meet three requirements: it will need to be
secure and at the same time it will need to be readily available and easily accessible.
This repository will be the central item of the management system. All other
requirements and features of the system will be driven by the data in the repository.

A second need of a management system is a Point-Of-Sale (POS) module. This
POS module is needed for cashiers to quickly and efficiently assist customers in their
purchase of items from the store. Without a POS module, the cashiers must manually
add the price of each item, make quick decisions about the price of an item if it does not
have a sticker, add receipts at the end of the day, and complete manual inventory
counts. Therefore, the POS module must then make the job of a cashier easier and
more efficient. The POS module must have a connection to the repository of inventory
for price lookups; it must calculate the price of the overall sale; it must be able to
calculate the tax of a sale; it must deduct the quantity of the item in the inventory list by
the number of items ordered; and it must have the ability to calculate in special pricing
like coupons or tax-exempt status; it must record all this information about a sale for the
purpose of records and reports; it must be able to handle item returns by customers and

generate the appropriate reports regarding such action; finally, the POS module must be

able to make use of common POS hardware like a barcode scanner, cash drawer, and
receipt printer.

A third need of a management system is reporting functionality. Management
needs to be able to see the reports that detail the number of items sold, the amount of
money being generated by sales, high or low selling items, high selling periods, or any
other type of analytical or statistical reports. The reports must be able to pull data from
the repository about sales as well as be able to relate data about the sales to inventory
data.

A fourth need of a management system is inventory control functionality. This
would include functionality to add to and to edit items in the repository, and create orders
for either new or existing items. A subset of this functionality would also be several
business components. This would include the ability to track accounts payable on
orders placed for items, and also track accounts receivable on credit purchases.

In conclusion, there is a need for a system that makes the daily tasks and
operations of bookstore owners simpler and more convenient. The system should be
easy-to-use as well as clean and neat. Automation and efficiency is the ultimate goal,

not confusion and more work.

Solution
My solution to the bookstore owners dilemma is a customized software and
database application called the Bookstore Management System.
Some of the highlights of this product will be
e Two stand-alone consoles, a Point-of-Sale (POS) console and a Management
console:
e POS integration with all major POS hardware, including a barcode scanner

receipt printer, cash drawer, pole display, and credit card processor:

e Centralized database to which one or more consoles can connect:

e Complete control of inventory through Management console including the ability
to add and edit items in the database, categorization of the items, management
of distributors and their contacts, contact capabilities to the distributors for direct
ordering, and employee management:

e Account tracking for accounts payable and receivable:

o Reports for sales analysis and accounts analysis:

Separation of duties through user roles for management and cashier
responsibilities

The POS console of the software application will be designed in a manner similar to
current POS systems to allow for similarity in operation. It is important that the user
interface is designed in such a manner that it is easy to operate and easy to teach others
how to operate. The POS console will allow for the reading of item information from the
database, and writing to the sales records. The POS console will not have access to

write information to any of the item tables.

User Profiles

There are two user profiles that will be created for the system, the manager and
the cashier.
Manager

The manager profile will be the administrator of the system. The manager will
have complete control over the database and all the information in it. He/she will be able
to add and edit items, add and edit employee information, view and print reports, make
price adjustments, and create coupons. The manager will also be able to operate the

POS console.

10

Cashier

The cashier will be able to only operate the POS console. This will restrict those
that have been labeled as a cashier from changing item information. Through the POS
console, the cashier will have the access to read only the item information and write to
the sales records table only for the current sale or return. The cashier will not have
access to go back and change sales information; a manager would be required to do

that.

11

Design Protocols

Software Design

The Bookstore Management System will be a single software application with
two modules. A user will be required to log into the system to begin use of the software.
The functions that will be provided to the user after login will depend on their granted
role and are shown in the use cases in Figure 1. This use case diagram shows that
either a Cashier or a Manager can log into the system. The manager will have all the
functionality available that the Cashier has, plus additional capabilities. The Cashier will

only be able to operate the POS system.

POS System

Customer y Create Sale

Tax Calculator

Credit Card Processing
System
Create Return

Login and
Verification

/ Management
Console

Cashier Generate Reports

=Ee =]

\ Manage Database
Login and ltems
Verification

Manage Accounts

Manage Employees

Figure 1 — Use Case Diagram

12

Class Design

The software component of the project has been developed using the n-tier
application approach and as such has 3 layers: the user interface layer, the data access
layer, and the business process layer. Figure 2 illustrates all the classes and their
interaction with each other. The data access layer has an access class that corresponds
to each object class in the business layer. For example, the ItemDA class is the data

access class for the Item business layer class.

ItemDA

+ltemDA()()
+addltem(Attributes)()
+updateltem(existingitem)()
+loadltemByID(itemid)()
+loadltemByUPC(upccode)()
+loadltemByISBN(isbnnumber)()
+listAllltems()()

CategoryDA

+CategoryDA()()
+addCategory(Attributes)()
+updateCategory(existingcategory)()
+loadCategory(categoryid)()
+listAllCategory()()

Data Access Layer

SaleDA

+SaleDA()()
+AddSale(Attributes)()
+Addltem(item, sale)()
+loadSale(saleid)()
+loadSaleltem(saleid)()
+listAllSales()
+listAllltemSales()
+addPayout()
+listPayouts()
+createReturn()
+addReturnitems()

StyleDA

+StyleDA()()
+addStyle(Attributes)()
+updateStyle(existingstyle)()
+loadStyle(styleid)()
+listAllStyle()()

InvoiceDA

+InvoiceDA()
+addInvoice()
+updatelnvoice()
+loadInvoice()
+loadAllCustomerinvoice()
+loadAllinvoice()
+loadAllOpenlinvoice()
+loadAllClosedInvoice()

GenreDA

+GenreDA()()
+addGenre(Attributes)()
+updateGenre(existinggenre)()
+loadGenre(genreid)()
+listAllGenre()()

DistributorContactDA DistributorDA PublisherDA AuthorDA
+DistributorContactDA()() +DistributorDA()() +PublisherDA() +AuthorDA()
+addDistributorContact(Attributes)() +addDistributor(Attributes)() +addPublisher() +addAuthor()
+updateDistributorContact(existingcontact)() +updateDistributor(existingdistributor)() +updatePublisher() +updateAuthor()
+loadContact(contactid)() +loadDistributor(distributorid)() +loadPublisher() +loadAuthor()
+listAllDistributorContact()() +listAllDistributor()() +listAllPublisher() +listAllAuthor()

CustomerDA EmployeeDA
+CustomerDA() +EmployeeDA()()
+addCustomer()() +addEmployee()()
+loadCustomer()() +updateEmployee()()
+listAllCustomers() +loadEmployee()()
+updateCustomer()() +listAlIEmployees()()

Figure 2 — Data Access Layer

13

Business Layer

Item Sale Invoice
-itemID : int -saleid : int -invoice_id : int
-ltemName : int -datetime -sale_id : int
-ISBNNumber : string -taxexemptid : int -date_created : Date
-UPCCode : string -salestaxrate : decimal -amount_due : decimal
-PublishedDate : string -subtotal : decimal -date_paid : Date
-Edition : string -taxtotal : decimal -amount_paid : decimal
-Description : string -saletotal : decimal -payment_type : string
-Price : decimal -amounttendered : deC|maI +Invoice()
_Cost : decimal -changereturned :_demmal +getAttribute()
_Category : int -paymenttype : string +setAttribute()
-Genre : int -saleitem
-Style : int +Sale()()
-Author : int +Sale(Attributes)()
-Publisher : int +getAttribute()()
-Distributor : int +setAttribute()()
+item()() +calculateChange()()
+Item(attributes)() +calculateTax()()
+getAttribute()() +calculateSubTotal()()
+setAttribute() +calculateSalesTotal()()
+addltem(ltem)()
+removeltem(ltem)()
+updateltem(index, Item)()
+listitems()()
+getltembylndex(index)()
+removeltembylndex(index)()
Categor Genre
- g. Y Style -genreid : int
-categoryid : int -styleid : int -name : string
'gamefftr'”f? i -name : string -description : string
+C(:eastcenpo|r0r(1)(.)s rng -description : string +Genre()() -
+Category b +Style()()) +Genre(Attributes)()
gory(Attributes)() +Style(Attributes)() +getAttribute()()
*getAttribute()() +getAttribute()() +setAttribute()()
+setAttribute()() +setAttribute()()

Distributor DistributorContact Publisher Author
-distributorid : int -distributorid : int -publisher_id : int -author_id
-name : string -contactid : int -name : string -first_name
-phonenumber : string -firstname : string -phonenumber : string -last_name
-address : string -lastname : string -address : string +Author()
-city : string -emailaddress : string -city : string +getAttributes()
-state : string -phonenumber : string -state : string +setAttributes()
-zip @ int +DistributorContact()() -zip : int +Validate()
+Distributor()() +DistributorContact(Attributes)() +Publisher()
+Distributor(Attributes)() +getAttribute()() +getAttribute()()
+getAttribute()() +setAttribute()() +setAttribute()()
+setAttribute()()

Employee Customer
—employee_id -qustomer_|d
-first_name :Iﬂe::tt_r?:m:
-last_name —
-password -address
-role -city

-state
+Employee() -zip
+getAttributes() -phone
+setAttributes() _email
+Validate() +Customer()

+getAttributes()

+setAttributes()

Figure 3 — Business Process Layer

14

Database Design

The database for this project is a collection of highly normalized tables. The
central table is the Item table, and the majority of the other tables are related in some
way to the items. The Publisher, Distributor, Category, Genre, and Style tables are all
relational secondary tables that contain additional information about the items. The
Sales and Return tables relate to the Item table in that a sale or return can contain

multiple items.

15

Category Publisher DistributorContact
PK | category_id PK | publisher_id PK_|contact id
category_name publisher_name FK1 ?lsttrlbutoud
description irst_name
< A last_name
email_address
Item Author phone_number
PK_|item id PK |author_id ¢
> . :
Employee _UDbC_COde . first name Distributor
isbn_number - — -
PK | employee_id item_name last_name PK | distributor_id
description nam
rsiname genre ﬁonee number
last_name quantity gddre;s
phone_number price > it
address published_date | zltayte
city edition < N
state cost zip
zip FK1 | distributor_id P—— y
role FK2 |author_id P
A FK3 | publisher_id P PK | coupon_code
FK4 | category_id AccountsPayablel
FK5 | coupon_code description -
- PK ayment_id
amount favmentic
A FK1 | distributor_id
Sale reference_number
K date_created
PK |sale_id amount_due
date_paid
date amount_paid
FK1 | coupon_code
discount_manual
taxexempt_id Saleltem
FK3 | customer_id < PK.FK2 | sale id
FK2 | employee_id PK.FK1 item id
A 4 quantity
SaleCoupon price
discount_manual
PK | coupon FK3 coupon_code
coupon_description A
amount
Returnltem
y
s 1 PK,FK1 | sale_id
ustomer PK,FK1 | item_id
PK | customer_id AccountsReceivablel PK return_id
first_name PK |invoice_id quantity
Iast:name] amount_credited
phone_number |« FK1 | customer_id date
address date_created
city amount_due
state date_paid
zip amount_paid

Figure 4 — Database Diagram

User Interface
The user interface is an important part of this project. The user must be able to
understand the functionality available to him through the screens they are looking at and

know how to apply it. The overall design will be a toolbar at the top of the screen with

16

buttons that take the user to the main subsections of the program. On each section, the
functionality available there will be specific to that given area.
POS Console

It is important that the user interface design of the POS Console be designed
with a similar look and feel compared to current POS Consoles. This similarity would
allow for familiarity in usage and ease of transitioning from one system to another. The
design components that are outputs from this requirement include: large, easy-to-read
buttons; a list of the items in the current sale or return; on-screen hints for keyboard
shortcuts; clear flow of process from start of new sale or return to completion of
checkout; and prompts at appropriate milestones in the sale or return process flow.

Management Console

The user interface design of the Management Console will contain a large
amount of functionality, but should be presented in such a way that it is not confusing or
hard to use. This simplicity will be achieved by breaking down the functionality into

similar categories, and presenting each category on a separate screen.

17

Project Plan

Timeline
Task Name Duration Start Finsh |F [January February Warch [Apri [may
12025 11 | 1B | A5 | 1422 [129 | 2/5 | 2012 [2119 | 2426 | 5 [a2 | 319 | 3/26 | 42 | 4/ | 4116 [423 | 4130 | &7 [!
1 Research Project 8287 days Fri9/30/05 Thu 1/19/08
2 Present Proposal 1.33 days? Fri1/20/06 Sat 1/21/06 1
3 Design Database 19 days Sun 171406 Fri 1127106
4 Design Base Classzes 19 days Sun 1/1/06 Fri 1727106
5 Develop Database 17.17 days ~ Sat 1/28/06 Sun 2M19/06 2
6 Develop Base Classes | 19 days Fri1/27/06 Sat2M1/06 4 Jonathan Makcen[10%] Visual Studio C#
7 Develop Data Acess Classes 30days ~ Sat 1/28/06 Sun 2/19/06 SQL Server Database Jonathan Makcen[10%],Visual Studio C#
8 Design User Interfaces 19days Wed 211/06 Wed 2M5/06 Jonathan Makcen[10%],Visual Studio C#
9 Develop User Interfaces 19 days| Wed 2M5/06 Wed 3/1/08 Jonathan Makcen[10%],Visual Studio C#
10 Design Buginess Layer Classes % days Tue /706 Mon 2/13/06 Jonathan Makcen[10%],Visual Studio C#
" Develop Business Layer Classes 21days Mon2M306 Wed 3/1/06 1 Jonathan Makcen[10%],Visual Studio C#
12 Present Prototype 025 days Thu 3/2/06 Thu 3/2/06 & 32
13 Design Credit Card Processing 6.67 days Frid/aie Sat 311/06
14 Develop Credit Card Processing 28days Sat3M1/06 Tue 4/18/06 1
15 Develop POS Hardware Interaction 37.33days Wed 31506 Thu 5i4/08
16 Design Reports 6.67 days Sat 4/1/06 Sat 4/8/06
17 Develop Reports. 18,67 days Sat 4/3/06 Fri Si5/06 1
18 Testing 91.33 days Sun 1/1/06 Fri 5/5/08
19 Final Presentation 1.33 days? Mon S/B/06 Wed 5/10/06
Figure 5 — Project Timeline
Resources

o Developer (myself)

e SQL Server 2005 Express
o Visual C# 2005 Express

e Visio 2005

e Project 2005

e Advisor (Russ McMahon)

18

Budget
The chart in Figure 6 is an estimate of the cost of labor for this project. Since |
am using SQL Server 2005 Express and Visual C# 2005 Express, there are no software

costs for this project. These are free downloads from Microsoft.

Task Mame | Total Cost |

Research Project F2,880.00

il Prezent Proposal F35.00
| Design Database $336.00
N Dezign Baze Classes F336.00
| Develop Databasze $336.00
N Develop Base Classes F336.00
N Develop Data Acess Classes F336.00
il Deszign User Interfaces F336.00
il Develop Uszer Interfaces F336.00
I Deszign Buziness Laver Classes F165.00
N Develop Business Layer Classes F360.00
| Presert Prototype $35.00
i Des=ign Credit Card Processing F120.00
b Develop Credit Card Processing Fa04.00
i Develop POS Hardware Interaction FE72.00
| Design Reports $120.00
"| Develop Reports $336.00
1| Testing $2,550.00
1| Final Presertation $35.00

Figure 6 — Budget Estimation for Labor

19

Proof of Concept

Login
When a user starts the program, they are presented with the Welcome Screen
(Figure 7). The welcome screen provides two options to the user, launching either the

POS Console or the Management Console.

Figure 7 — Welcome Splash Screen

When the user attempts to launch one of the consoles, they will be prompted for their

username and password combination. The username is their employee id number, and

their password is a phrase that the user sets.

B Login =] 3

IJzername: ||

Paszward: I

Login |

Figure 8 — Login dialog box

20

Two checks are performed. The first is to validate that the user attempting access to the
console is a registered user in the system. The second check happens when the
management console is launched. The user must be a Manager. A cashier cannot log
into the management console.
Point-of-Sale Console

There are three pieces of functionality in the POS console. A cashier has the
option to start a new sale, start a new return, or perform a payout.
Sale

The sale functionality provides the tools for the cashier to create a sale for a
customer. This includes adding items to the sales list, editing the price of those items on
the sales list, adding a miscellaneous item, changing the taxable status of items on the
sales list, adding a coupon to the sale, and processing the payment for the sale either by
cash, check, credit card, or charge account. Figure 8 depicts the system at the point at
which items can be added to the sale and figure 9 depicts the system at the point of

payment with the Cash options shown.

21

% Bookstore Management System - POS

=8
Start Retun | StatNew
Sale

Subtotal: 161.90 Add Miscellaneous
Tax: 4.00

Total: 165.90

Tendered: 0.00

Edit tem Details

I
b

Remave ltem

Add Coupans

Change:

Fay Mow

liem 1D | Item Name Fiice Tanabls
Advanced topicin MET 935 [
2 Programming in C# HET 33.93 [
3 Changes testing 15.33 [N
4 Advanced Programming in Visual Basic NET 29,33 [N
5 Programming in'¥B.NET 35.33 [N
6 The Computer Continuum 29,33 [N

— [

Figure 9 — Sale: Adding Items to the sale

[Bookstore Management System - POS

Subtotal: 161.90 Cash
Tax: 4.00

Total: 165.90 =

Charge Account

i

|

Tendered: 0.00

Change: ok

Create Sale

UI

Figure 10 — Sale: Cash Payment

Jtom 1D, [itemName Fiem Taees
>__Advar\ced topicin NET 355 [
2 Frogramrming in CH NET 39.99 [~
3 Changes testing 15.99 -
1 ‘Advanced Programming inVisual Basic NET 2959 [N
5 Frogrammiing InV/ NET 39 [N
3 The Computer Confinuum 29.99 -

Cash Tendered from Customer.

]

SEIES

Start Retun | StatNew
Sale

22

Return
The return functionality provides the tools for the cashier to create a return on
particular items that had previously been sold. This includes loading a previously

created sale, selecting the items to return, and processing the return of payment for the

items selected.

[Bookstore Management System - POS

Start New

Gale Start Retum

Payout

ftem D temName Price Taxable Retum
Advanced topic in .MET
Programming in C&# .NET

Subtotal: 49.94 Retum Type

(& Cash O Credit (O Charge O Check

Tax: 3.00

Total: 52.94

Process Retum

Figure 11 — Return on a sale

Payout

At times, it is necessary for the person managing the cash register to perform a
payout. The reasons for this could be: Manual return of an item where there is no
receipt, purchase of an item, or a need for cash for some other reason. The system

requires entering a reason for the payout for tracking and history purposes.

23

1 Bookstore Management System - POS : E]

gaiflicn Start Retum
ale

Payout ‘

Payout Amount: 53.55

Reason: | Payout for purchase of used books |

Frocess

Figure 12 — Payout functionality

Management Console

The management console provides all the functionality needed to maintain the
store inventory, sales data, customer data including outstanding invoices, and employee
data. In addition, it also provides the necessary reports to enable proper management
of the store.
Inventory

The management console provides management of the inventory by providing
the necessary processes to add new items and update item information. The inventory
can also be searched by item id, isbn number, upc code. Additionally, searches can be

run on the item name field, where the system will return all items where the string the

24

user enters is in the item name. Finally, reports can be run to show the user low stock

items and selling history on items.

[Bookstore Management System - Inventory Management _[&]x]
File Tools
Employess | Customers | Distibutors ﬁ;‘:; Inventory ";‘fai“a“‘j'?: R“::;:j‘:ge
item_id | upc_code ishn_number item_name description genre: quantity alert_quantity price =
E_ 12345678 123456 Advanced topic .. | a cif programmin... |1 0 2 9.9500
H TROO72886252 | 0072852321 Programming in C... | cff programming t.. |1 0 1 39.9900
3 7654321 1234567 Changes testing textbook for testi.. |1 1] o 15.9300
4 FROOF2677TI7 | 0072512393 Advanced Progra... | advanced vb ne.. |1 0 1] 29,9900
5 93939 35339 Programming in V... | test 1 0 1] 35.9900
3 7RO130898135 | 0130898133 The Computer Ca... | testing 123 1 0 5 29.9900
7 780131423066 0131483062 Applying UML an... | Software Engine... |1 26 o 51.9300
] PEIST2H7000 | 1572317000 Programming Acti.. | ASP programmir... |1 0 1] 55.9900 -
9 2221 1222 et item add need 5 better des... |1 0 1] 9.8500
10 7BO07ISE03963 | 0735603965 Inside Microsoft .| SOL Server 2000... | 1 L] 1] 53.9300
11 780130933836 013093383« Application Devel.. | An advanced CH... |1] 3 49,3300
A 393399 " \temlused farmis... |1 0 n 00000 Ll_l
Item ID: |xxxxxxxx ISEN Number: |\ UPC Code:

ltem Mame: [

Quantity Alert Quantiy: Description:
Cost
Fiice: Tarable: 171

Search By Name
Published Date: Edition: Wiew Low Stock Items

- D IS e O E—

Authar: |—;[_| Publisher - _I Distibutar = |

Figure 13 — Inventory: Adding an item

[Bookstore Management System - Inventory Management _[&]x]
File Tools
st Sales Accounts | Accounts
Employees | Customers | Distibutors fistory Inventory Payable fioeetontle

itemn_id upc_code ishn_mumbar | item_name | description genre quantity alert_quantity plice -
7 760131483066 | 0131489062 Applying DML s | Scftwars Engine. . |1 86 0 514900

L 751572317000 | 1572317000 ASP programmin... |1 0 [55,9900
k] 2221 1222 testitem add need 3 better des... | 1 0 [2.9900
10 70736603983 | 0735609905 Inside Microsoft . | SOL Server 2000 |1 El 0 59,9300
1 740130933836 | 013093383« Application Devel . | An advanced T8 |1 8 3 43,9300
999399 Miscellaneou ltem used for mis... |1 0 [0.0000
1000000 700616223077 | 0B1822307% Caloulus Early Tr_. | acslokita:sdfkis:s... |1 2 5 132.9300
1000001 740072307865 | 007290736+ Anatomy and Phy 1 0 0 1200000
1000002 7H0619130879 | 0619130873 Guide 1o Metwork... | sample description |1 19 [53,9900
1000003 FHISTZNT00 | 157231700 sip test 1 1 1 93900
1000004 1572317002 | 1572317002 52 test 8 2 2 30000

4 3
ltem 1D: [8 15BN Number: [1572317000 UPC Code: [7g1572317000

Item Name: [Programming Active Serve Pages

Quaniiy: [et Quantiy: [3 Desorption:
cos: [B59 [ASF programming guide
Rz s
Price: [5.99 Tasable:

frindl t=n

Search By Name
Published Date: [2001 Edition: ~ [1 Wiew Low Stock [tems

Categary: [Baok =] .| swie [Fapeback =] .| Gewe [Tesbosk -] .

Athor - [ifier, Seon ~ Fublsher: [Miciosaft Press v Distibutor: [Miciosoft - —

Figure 14 — Inventory: Editing item details

Employees

The management console provides the management of employees through

providing the ability to add and update employee information.

[Bookstore Management System - Inventory Management

File Tools

srnployes_id

1001002

| first_name

Employses

Custamers

Distributors

Sales
Histary

last_name

password

role

makcen

122281

manager

makcan

18221

Cashiar

275783

Christ

password]

Cashier

607903

Gump

password2

Cashier

149001

Lawasan

passmordd

Marager

Emploes(D: [T
FistMame: [|
LastMame: [
Password [|

Corfitm Password:
Role: >

Add Employee
Cancel

Figure 15 — Employee Management

Customers

Customer management is provided as well by the ability to add and edit

customer information. Additionally, customers are able to charge purchases to their

account. Management of this is provided by the ability to view outstanding invoices and

print individual invoices for billing purposes as well as complete outstanding invoices.

26

[Bookstore Management System - Inventory Management

File Toolks

Employess

Customers

Distributors

Sales

Histary

Inventory

-[5]x]

Accounts
Feceivable

Accounts
Fayahle

customer_id first_name:

last_name:

phone_number

address

city

jonathan

makcen

5132383292

111 main st

cincinnati

tiisha

makcen

uss

Tamisra

Sanpal

5134671358

123 south st

cincinnati

5135564455

100 victary park..

cincinnati

5135564333

7643 Clifton Awe.

Cincinnati

George

Bush

5132345685

1 Main Stiest

Washington

Custarmes 1D

First Mame:

Addiess:

City

Phaone Number.

' Customer Information

charlie:

the dog

5135556666

10101
iuss

Last Mame: |memahon

[100 victory parkway

100 strest

cincinnat

Customer Invoice Information

Dutstanding Invoices: 6

cincinnati State: [oh Zipr [45221

5135564455

Save Changes |

Cancel

invoice_id | sale_id dats_creatad amount_ = |
has 5/3/2006 423 PM | 0.0000
R E) 5/10/2008 222 . | 116 6200
132074 E 5/4/2006 8:25 PM | 192 8000
2116 ED 5/3/2006 428 PM | 0.0000
384464 E 5/4/2006 8.2 PM | 122 8200
31719 E

5/2/2006 10:24 oooon -
3

Pap Now Frint rvoice

Sales History

Figure 16 — Customer Management

Sales history is tracked by both item sales history and total sales history. These

reports are able to be filtered several different ways, including date ranges, sale value

and item counts.

27

B Bookstore Management System - Inventary Management

2/2/2008
2/23/2006 923
2/23/2006 .23
2/23/2006 934 ..
2/23/2006 335
2/23/2006 342 ..
2/23/2005 9.43 ..
2/23/2006 346
2/24/2006 312 ..
2/24/2006 312
2/24/2008 350 211.7456
2/27/2008 507 ... 29E.E198
2/27/2006 515 1338246
3/2/2006 3:40 A0 4135304
3/2/2006 10:26 101.6800
3/2/2006 2:45 PM 512.8000
3/2/2006 4:47 PM 523.8500
3/2/2006 5:15 P 133.8200
4/6/2006 10.07 ... 2203600
4/25/2008 3.20... 10,7500
4/25/2006 3.28 539400

Figure 17 — Sales history

B Bookstore Management System - Inventory Management

Advanced topic in MET
Frogramming in C# .NET

Changes testing

Advanced Programming in Visual Basic MET

Frogramming in VB.MET

The Computer Continuum

&pplying UML and Pattems

Frogramming Active Serve Pages

test itemn add

Miscellansous

Anatory and Physicloay

Figure 18 — Sales history: Item count

Test Plan

The Test Plan for this project consists of two phases. The first phase is unit
testing. As each piece of the software is developed, it will be tested both independently
and in conjunction with the rest of the project. Additionally, all input forms will be tested
for data quality and validity. All data access objects will be tested for correct functionality
and for proper error capturing in the event of incorrect usage. All forms will be tested to
ensure that they do not allow bad data to be entered. All data displayed by the system
will be verified by comparing what the system displays to what is actually in the
database. The POS system will be tested to ensure that all calculations are performed
correctly and all receipts match the original sale request. When returns are created,
original sales information must be verified to be correct to ensure correct calculation of
the return amount.

The second phase of the testing will be the system testing and user acceptance
testing. The system will be set up for the users to use for a period of time in a testing
environment. This will ensure that the entire system is working together as expected,
that the system meets the users needs, and that the solutions are capable of providing

guality data.

29

Deliverables

e A database created in SQL Server 2005
¢ A POS front-end console designed in C# that has the capability to
0 Process the sales of items:
0 Process the returns of items:
o0 Interface with common POS hardware:
0 Interface with a credit card processor:
¢ A Management system designed in C# that provides data management, account
management, and employee management which includes
0 Add and edit items in the database:
0 Connect to distributors system to order/reorder items:
0 Manage employee data:
o0 Create and view reports for all relevant data:
0 Manage outstanding debts and credits:
o0 Create coupons for in-store use:
e User roles to provide security to the system
o Cashier role — ability to run POS console only:
0 Manager role — ability to run either the POS console or the Management

console:

30

Conclusions and Recommendations

Conclusion

In conclusion, | have developed a complete application that will assist a store
owner in running a small commerce business. The application was built on the .NET 2.0
Framework using C# as the coding language. The database and all database
procedures were developed using SQL Server 2005.

| failed to complete one deliverable, and that was providing the ability to create a
connection to a distributor for the purpose of automating orders. This is on my list of
things-to-do to get this project production ready. All other deliverables were successfully
met.
Recommendations

My recommendation to future Seniors is to find a project that pushes the edge of
whatever specialty they are in. | feel that my project was a little bland in that it was a
desktop application that connects to a database. | was able to successfully make the
POS hardware work, which was a great challenge; otherwise, it was a pretty standard
project. | would recommend finding something that is cutting edge and a little more
unique.

I did enjoy working with the POS hardware. In appendix A you will find code
samples of what it took to get them working. This was an interesting endeavor because

I had never programmatically worked with external hardware on the computer.

31

N

10.

References

Frederick, David. Business Analyst. Personal Interview. October 2005.
Hoffman, Kevin and Lonny Kruger. Microsoft Visual C# .NET 2003 Unleashed.
Sams: 2004.

Microsoft Windows Embedded Point of Sale Operating System website.
http://msdn.microsoft.com/embedded/getstart/devplat/pos/default.aspx. October

2005.
Microsoft SQL Server 2005 Express website.
http://lab.msdn.microsoft.com/express/sql/. October 2005.

Monroe Consulting Services - OLE for Point-of-Sale Systems website.
http://monroecs.com/opos.htm. October 2005.

Montgomery, Benjamin T. “Supplemental Sun Salon Management System”.
OCAS Timothy C. Day Technical Library. 2003

Point-of-Sale Superstore website.

http://www.posguys.com. October 2005.

POSWorld — Point of Sale and Barcode Superstore website.
http://www.posworld.com. October 2005.

Sales Consultant, PCAMERICA. http://pcamerica.com. Email interview. October
2005.

Seabolt, Brian. “The Complete Inventory Tyrant: A Total Inventory Control
System”. OCAS Timothy C. Day Technical Library. 2002.

32

http://msdn.microsoft.com/embedded/getstart/devplat/pos/default.aspx
http://lab.msdn.microsoft.com/express/sql/
http://monroecs.com/opos.htm
http://www.posguys.com/
http://www.posworld.com/
http://pcamerica.com/

Appendix A — OPOS Implementation

The implementation of the POS hardware was completed by using the
OLE for Point of Sale (OPOS) standards. Here are several code samples of those
implementations.
Barcode Scanner

Code added to the designer.cs page to create a data event handler for the scanner.

//

//scanner

//

this.scanner.DataEvent += new

SCANNERLib. DScannerEvents DataEventEventHandler(scanner_DataEven

t);

Object declaration

private SCANNERLib.ScannerClass scanner = new
SCANNERLib.ScannerClass();

Scanner initialization

scanner .Open(''Scannerl'™);
if (scanner.Open(‘'Scannerl'™) != 0)

{
}

scanner .DecodeData = true;
scanner .DataEventEnabled = true;
if (scanner.ClaimDevice(1000) != 0)

MessageBox.Show(*'Failed to connect scanner'™);

{

MessageBox.Show("'Failed to claim scanner'™);
¥
scanner .DeviceEnabled = true;
if (scanner.ResultCode != 0)
{

MessageBox.Show("'Failed to enable scanner™);
3

Event Handler Procedure
private void scanner_DataEvent(int 1)
{

txtUPCCode.Text = scanner.ScanData;

scanner .DataEventEnabled = true;

33

Pole Display

Object Declaration

private POS.Devices.OPOSLineDisplayClass ddd = new
POS.Devices.OPOSLineDisplayClass();

Object Initialization
try
ddd.Open(*'LC-PD"");
ddd.Claimbevice(1000);

ddd.DeviceEnabled = true;

catch (Exception ex)

{
}

MessageBox.Show(ex.Message);

Sending data to the display

ddd.ClearText();
ddd.DisplayTextAt(0, O,

.getStritemName(), 0);

ddd.DisplayTextAt(1, 0, i.getNumPrice().-ToString(), 0);

34

