Etd

 

Burial Depth And Lithofacies Control Of Stylolite Development In The Mississippian Salem Limestone, Illinois Basin. Open Access Deposited

Downloadable Content

Download PDF
Download Adobe Acrobat Reader
Date Uploaded: 03/26/2018
Date Modified: 03/26/2018

Stylolites in twelve stratigraphic sections of the Salem Limestone, distributed throughout the Illinois Basin, provide clues to their origin and development. Chemical and X-ray diffraction analyses reveal that stylolite seam material contains organic matter and clay minerals too sparse or absent in the host limestone to be considered solely as insoluble residue. Stylolite distribution in various lithofacies suggests that stylolites develop along thin sedimentary layers rich in organic matter and clay minerals. Stylolite density (vertical distribution) mimics the distribution of organic-rich sedimentary layers: sparse but thick in grainstone, and abundant but thin in packstone and wackestone. Many stylolites grade laterally into organic-rich layers, or hummocky seams. Thicknesses of stylolite caps and hummocky seams are approximately equal in the same host rock, but hummocky seams tend to be more laterally continuous. Stylolite density in packstone increases with burial depth, whereas hummocky seam density decreases. Hummocky seam thickness does not change with depth. Stylolite column height in grainstone, which is sparse in hummocky seams, increases with depth, whereas stylolite density does not increase. This list of observations supports the hypothesis that stylolites develop along pre-existing, organic-rich layers, or hummocky seams, rather than nucleating in pure host rock and creating organic-rich seams as accumulations of insoluble residue. Volumetric calculations indicate that the contribution of stylolites to pore-filling cement is 5 to 25 percent throughout the Illinois Basin.

Creator
License
Subject
Submitter
College
Degree Program
Degree
  • Ph.D.
Degree Date
Advisor
  • Chair: Wayne A. Pryor.
Publisher
Language

Items

Permanent link to this page: https://scholar.uc.edu/show/76537140z